Since the beginning of the semiconductor industry, we have relied on a doubling of transistor count per unit area every 18 months as a way to increase performance and functionality of devices. Since 28nm, this has broken. As such, designers now need to find new ways to continue increasing performance.

Internal Combustion Engine

Using the analogy of the internal combustion engine, for decades it was fine to have the fuel consumption and emissions that they had as the innovation was limited. Improvements to cars focused around adding features, adding things which made the car a nicer place to be. People bought new cars because they wanted the latest features. Then oil prices started going up, we became aware of the environmental impact, and with this innovation aimed at improving the efficiency of the engine. The result is quite astounding, the modern car engine delivers more power whilst consuming less fuel and emitting less harmful gasses.

The semiconductor industry is now in the position where it has to do the same. We can no longer rely on adding more transistors to make a better, faster, chip. The customer still wants their new computer, phone, or tablet, to be faster and have more storage than their old one.

One technique being deployed to provide the improvement is device optimisation. By being aware of a devices thermal and voltage environment and understanding where a given device is within the ever increasing sphere of device variation, allows the system architects and circuit designers to get more from a given piece of silicon. With the increase as well in the cost of advanced nodes, this is becoming even more important to ensure every last drop of performance is extracted from a die.

For more information about Moortec PVT Monitors on 28nm and FinFET visit: www.moortec.com

Leave a Reply

Your email address will not be published. Required fields are marked *